200382518390001 05

Allosaurus was one of the largest Late Jurassic predators, alongside Torvosaurus of the same area and the Megalosaurus of Europe. It was of a more primitive line of Theropods than the later Tyrannosaurs for example, and this group declined with their rise. It was 9-12 metres long and weighed 2-3 tonnes. Allosaurus, means, 'Strange Lizard', or 'Other Lizard'.

Nevertheless, for its day, it was top of the line and a deadly carnivore rivalled by few other Theropods on Earth in the Late Jurassic Period, outclassing the more primitive Ceratosaurs and Coelophysoideans. In short, the Allosaurus were plucky carnivores that probably endured just into the Early Cretaceous (the Berriasian Stage, although no evidence for this exists, it seems likely) They were afterall, the 'Lions of the Jurassic'. Allosaurus gives its family their name, and the Allosaurs lasted for tens of millions of years, only being replaced in importance during the Cretaceous. Torvosaurus may have been a rival, one could speculate.


Allosaurus was a typical large theropod, having a massive skull on a short neck, a long tail and reduced forelimbs. Allosaurus fragilis, the best-known species, had an average length of 8.5 m (28 ft), with the largest definitive Allosaurus specimen (AMNH 680) estimated at 9.7 meters long (32 ft), and an estimated weight of 2.3 metric tons (2.5 short tons). In his 1976 monograph on Allosaurus, James Madsen mentioned a range of bone sizes which he interpreted to show a maximum length of 12 to 13 m (39 to 43 ft). As with dinosaurs in general, weight estimates are debatable, and since 1980 have ranged between 1,500 kilograms (3,300 pounds), 1,000 to 4,000 kg (2,200 to 8,800 lb), and 1,010 kilograms (2,230 pounds) for modal adult weight (not maximum).[5] John Foster, a specialist on the Morrison Formation, suggests that 1,000 kg (2,200 lb) is reasonable for large adults of A. fragilis, but that 700 kg (1,500 lb) is a closer estimate for individuals represented by the average-sized thigh bones he has measured. Using the subadult specimen nicknamed "Big Al", researchers using computer modelling arrived at a best estimate of 1,500 kilograms (3,300 lb) for the individual, but by varying parameters they found a range from approximately 1,400 kilograms (3,100 lb) to approximately 2,000 kilograms (4,400 lb).

Several gigantic specimens have been attributed to Allosaurus, but may in fact belong to other genera. The closely related genus Saurophaganax (OMNH 1708) reached perhaps 10.9 m (36 ft) in length, and its single species has sometimes been included in the genus Allosaurus as Allosaurus maximus, though recent studies support it as a separate genus. Another potential specimen of Allosaurus, once assigned to the genus Epanterias (AMNH 5767), may have measured 12.1 meters in length (40 ft). A more recent discovery is a partial skeleton from the Peterson Quarry in Morrison rocks of New Mexico; this large allosaurid may be another individual of Saurophaganax.


The skull and teeth of Allosaurus were modestly proportioned for a theropod of its size. Paleontologist Gregory S. Paul gives a length of 845 mm (33.3 in) for a skull belonging to an individual he estimates at 7.9 m (26 ft) long. Each premaxilla (the bones that formed the tip of the snout), held five teeth with D-shaped cross-sections, and each maxilla (the main tooth-bearing bones in the upper jaw) had between 14 and 17 teeth; the number of teeth does not exactly correspond to the size of the bone. Each dentary (the tooth-bearing bone of the lower jaw) had between 14 and 17 teeth, with an average count of 16. The teeth became shorter, more narrow, and more curved toward the back of the skull. All of the teeth had saw-like edges. They were shed easily, and were replaced continually, making them common fossils.

The skull had a pair of horns above and in front of the eyes. These horns were composed of extensions of the lacrimal bones, and varied in shape and size. There were also lower paired ridges running along the top edges of the nasal bones that led into the horns. The horns were probably covered in a keratin sheath and may have had a variety of functions, including acting as sunshades for the eye, being used for display, and being used in combat against other members of the same species (although they were fragile). There was a ridge along the back of the skull roof for muscle attachment, as is also seen in tyrannosaurids.

Inside the lacrimal bones were depressions that may have held glands, such as salt glands. Within the maxillae were sinuses that were better developed than those of more basal theropods such as Ceratosaurus and Marshosaurus; they may have been related to the sense of smell, perhaps holding something like Jacobson's organ. The roof of the braincase was thin, perhaps to improve thermoregulation for the brain. The skull and lower jaws had joints that permitted motion within these units. In the lower jaws, the bones of the front and back halves loosely articulated, permitting the jaws to bow outward and increasing the animal's gape. The braincase and frontals may also have had a joint.

Postcranial skeletonEdit

Allosaurus had nine vertebrae in the neck, 14 in the back, and five in the sacrum supporting the hips. The number of tail vertebrae is unknown and varied with individual size; James Madsen estimated about 50, while Gregory S. Paul considered that to be too many and suggested 45 or less. There were hollow spaces in the neck and anterior back vertebrae. Such spaces, which are also found in modern theropods (that is, the birds), are interpreted as having held air sacs used in respiration. The rib cage was broad, giving it a barrel chest, especially in comparison to less derived theropods like Ceratosaurus. Allosaurus had gastralia (belly ribs), but these are not common findings, and they may have ossified poorly. In one published case, the gastralia show evidence of injury during life. A furcula (wishbone) was also present, but has only been recognized since 1996; in some cases furculae were confused with gastralia. The ilium, the main hip bone, was massive, and the pubic bone had a prominent foot that may have been used for both muscle attachment and as a prop for resting the body on the ground. Madsen noted that in about half of the individuals from the Cleveland-Lloyd Dinosaur Quarry, independent of size, the pubes had not fused to each other at their foot ends. He suggested that this was a sexual characteristic, with females lacking fused bones to make egg-laying easier.[4] This proposal has not attracted further attention, however.

The forelimbs of Allosaurus were short in comparison to the hindlimbs (only about 35% the length of the hindlimbs in adults) and had three fingers per hand, tipped with large, strongly curved and pointed claws. The arms were powerful, and the forearm was somewhat shorter than the upper arm (1:1.2 ulna/humerus ratio).The wrist had a version of the semilunate carpal also found in more derived theropods like maniraptorans. Of the three fingers, the innermost (or thumb) was the largest, and diverged from the others. The phalangeal formula is 2-3-4-0-0, meaning that the innermost finger (phalange) has two bones, the next has three, etc. The legs were not as long or suited for speed as those of tyrannosaurids, and the claws of the toes were less developed and more hoof-like than those of earlier theropods. Each foot had three weight-bearing toes and an inner dewclaw, which Madsen suggested could have been used for grasping in juveniles. There was also what is interpreted as the splint-like remnant of a fifth (outermost) metatarsal, perhaps used as a lever between the Achilles tendon and foot.


Allosaurus was an allosaurid, a member of a family of large theropods within the larger group Carnosauria. The family name Allosauridae was created for this genus in 1878 by Othniel Charles Marsh, but the term was largely unused until the 1970s in favor of Megalosauridae, another family of large theropods that eventually became a wastebasket taxon. This, along with the use of Antrodemus for Allosaurus during the same period, is a point that needs to be remembered when searching for information on Allosaurus in publications that predate James Madsen's 1976 monograph. Major publications using the name "Megalosauridae" instead of "Allosauridae" include Gilmore, 1920, von Huene, 1926, Romer, 1956 and 1966, Steel, 1970, and Walker, 1964.

Following the publication of Madsen's influential monograph, Allosauridae became the preferred family assignment, but it too was not strongly defined. Semi-technical works used Allosauridae for a variety of large theropods, usually those that were larger and better-known than megalosaurids. Typical theropods that were thought to be related to Allosaurus included Indosaurus, Piatnitzkysaurus, Piveteausaurus, Yangchuanosaurus, Acrocanthosaurus, Chilantaisaurus, Compsosuchus, Stokesosaurus, and Szechuanosaurus. Given modern knowledge of theropod diversity and the advent of cladistic study of evolutionary relationships, none of these theropods is now recognized as an allosaurid, although several, like Acrocanthosaurus and Yangchuanosaurus, are members of closely related families.

Discovery and historyEdit

Ad blocker interference detected!

Wikia is a free-to-use site that makes money from advertising. We have a modified experience for viewers using ad blockers

Wikia is not accessible if you’ve made further modifications. Remove the custom ad blocker rule(s) and the page will load as expected.